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Abstract-A number of uniaxial stress wave propagation problems are solved based on the unified,
multi-dimensional, elastic-viscoplastic constitutive equations of Bodner-Partom and a finite difference
numerical procedure. Solutions are obtained for cases of a velocity imposed for a time period or indefinitely
at the end of a semi-infinite bar, and for the condition of a finite bar subjected to a high velocity
superimposed on an applied low velocity after a time interval. Work-hardening is taken to be isotropic for
stress of constant sign, while an isochoric, anisotropic work-hardening formulation is employed for
problems involving stresses of reversed sign due to unloading or reflections. The numerical exercises are
based on constants for a strongly strain rate sensitive material, titanium, and the results indicate good
qualitative agreement with a wide range of experimental observations.

INTRODUCTION

The study of plastic waves in solids has had an unusually controversial history considering that
the geometry, loading circumstances, and the boundary and initial conditions could be precisely
defined. It seems that one of the essential difficulties in analytical treatments is the modelling of
the inelastic material properties and their subsequent use in the field equations. Certain
response characteristics are sensitive to the details of the material characterization while others
are insensitive to gross variations in the modelling, as discussed e.g.[1-3]. This variation of
response characteristics has led to much of the controversy when analytical predictations based
on particular material representations have been compared with experimental results. Another
source of difficulty for the most studied case of longitudinal stress waves in long rods is the
determination of the relative importance of transverse inertia and straining effects which are
usually omitted in the conventional one dimension analyses. These could be of some
significance near the impacted end and at early times, which are the circumstances when rate of
straining effects are most influential. An extensive discussion on these points is included in the
recent review article on elastic-plastic stress waves by Nicholas [4].

There have been developments in recent years in the formulation of constitutive equations
which are more realistic representations of the actual physical behavior of materials than the
conventional models. In addition, considerable advances have taken place in methods of
numerical analyses and in computational capability which make solving highly nonlinear
problems appreciably simpler. For these reasons, the problem of uniaxial wave propagation in
rods of elastic-viscoplastic material deserves reexamination.

In this paper, the constitutive equations of Bodner-Partom for elastic-viscoplastic work
hardening materials [5,6] are used for the material characterization. These do not require a
specific yield criterion or loading-unloading conditions which make them particularly suitable
for dynamic plasticity problems. The formulation is, therefore, different from that based on a
strain rate dependent yield criterion such as that of Perzyna which was used in a recent
study [7]. The ability of the equations of [5,6] to represent and predict a wide range of dynamic
material response characteristics has been demonstrated in a number of exercises [6, 8-10]. An
isotropic work-hardening formulation was employed in most of these examples which was
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suitable for the given conditions. For wave propagation problems that involve unloading and
reflected waves, an anisotropic hardening theory that would include the "Bauschinger effect" is
required. In the present exercises, this is accomplished by a modified (isochoric) version of the
anisotropic hardening theory of (I I] which is identical to that of(t2] for the one dimensional
stress case.

It is noted that although only uniaxial stress and inertia terms are considered in the problem,
the strains are three-dimensional and the mUlti-dimensional form of the constitutive equations
is required. The small strain approximation is employed in these examples, but it seems possible
to generalize the formulation to large strains without much difficulty.

Numerical examples are given for conditions of a velocity imposed for a time period or
indefinitely at the end of a semi-infinite rod, and for the case of a finite rod subjected to a high
velocity superimposed on a low velocity after a time interval. The numerical procedure is based
on finite differences in which some new techniques enable rapid convergence of the results. The
numerical results are compared to those of various experiments and to the predictions of the
more classical theories.

FORMULATION OF GOVERNING EQUATIONS

We consider a thin rod for which the only non-zero stress (TIl is in the axial XI direction so
that the equation of motion is

0)

where u is the axial particle displacement and p is the mass density. Inertia effects are assumed
to occur only in the axial direction but transverse strains and strain rates are present. All the
strains are taken to be functions of XI and constant in the transverse directions X2 and X,. On
the basis of the strain-displacement gradient relation, Ell = U,I and separation of the total strain
into elastic and inelastic components with Hooke's Law applying for the elastic strain, the
equation of motion could be expressed as

(2)

where E is the Young's Modulus.
The elastic-viscoplastic constitutive equations with isotropic work hardening are those

formulated by Bodner and Partom[5,6] which are based on taking the elastic and plastic
deformation rates (strain rates for small strains) to be additive and each non-zero at all stages
of loading and unloading. Other essential assumptions of the theory are that the Prandtl-Reuss
flow equation applies for the plastic strain rate,

(3)

and that inelastic deformation is governed by a continuous relation between the second
invariant of the plastic strain rate Dl, and the second invariant of the stress deviator h That is
Dl = F(J2' Zk> T) where Zk are internal state variables defining the inelastic state with respect
to deformation, and T is the temperature. Squaring (3) and solving for A, i.e.

(4)

enables the total strain rates to be expressed as functions of the uniaxial stress (T1I = (T, stress
rate &, and state variables which are incorporated in the A term,

Ell = 0/E)&+(2/3)A(T

A particular form for Dl suggested in (5, 6] is

(5a)

(5b)

(6)
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where D0
2 is the limiting value of D/, n is related to the steepness of the D/ - 12 curve and

therefore controls strain rate sensitivity, and Z is a scalar internal state variable which
represents the overall resistance to plastic flow, i.e. it is a history dependent work-hardening
parameter. The evolution equation for Z is based on plastic work WI' as the controlling factor
in hardening, so that

t=(~)(~)dWp dt

where WI' = <TE fl in this case. A form chosen for dZ/d WI' in the previous work is

dZ
dW =(m/Zo)(ZI-Z),

I'

On the basis of (8), eqn (7) could be integrated to give

(7)

(8)

(9)

where Zo is the constant of integration, Le. the value of Z for WI' = O.
For stress waves that undergo unloading and reflections with consequent reloading in the

opposite direction, it is appropriate to include anisotropic (directional) hardening, the "Baus
chinger Effect", into the material characterization. A multiaxial anisotropic hardening law was
formulated in [11] in conjunction with an anisotropic form of the Prandtl-Reuss flow law as a
generalization of the constitutive equations. However, plastic incompressibility was not im
posed which could lead to physically unrealistic plastic volume changes and possible in
consistancy with Drucker's Postulate under special loading conditions [14]. Despite this, the
stress and strain fields obtained in [13] for various problems using the compressible anisotropic
formUlation of [11] appear to be essentially correct.

A method of resolving the difficulty is to maintain the anisotropic hardening law proposed in
[11], which has a number of desirable features and appears to be reasonably realistic, and to
enforce incompressibility of plastic flow as an additional condition. Procedures for doing this
are described in [14], and lead to consistency of the anisotropic hardening formulation with
stability considerations.

In the case of uniaxial stress, imposition of plastic incompressibility results in incremental
isotropic of the flow law, i.e. the flow law is necessarily isotropic at each time increment even
though hardening is anisotropic. That is, eqn (3) is applicable where the coefficient A depends
on an effective hardening variable which is a scalar function of the components of a general
hardening tensor. The definition of the effective hardening variable proposed in [14] reduces to
the procedure for anisotropic hardening described in [12] for uniaxial stress of changing sign.
That method, which involves uniaxial hardening components in tension and compression, was
used in the present calculations in examples exhibiting reversed stresses due to unloading and
reflections. An additional material constant, q, appears in the anisotropic hardening formulation
which is the proportion of the hardening increment that is isotropic while the remainder is
anisotropic (directional). It is noted that the incremental form of the evolution equation, (8),
must be used for these calculations where Z is the current value of the applicable hardening
variable depending on the sign of the stress.

NUMERICAL TREATMENT
The governing equations have been solved numerically by a finite difference procedure by

dividing the bar into equal sub-intervals of size 4XI, and introducing a time increment 4t. The
procedure is described in [13] for a 2-dimensional dynamic problem and it is summarized here
for the present uniaxial stress situation.

The numerical solution can be divided into three parts. In the first part, the displacements at
interior points of the bar are computed by integrating the equation of motion (2). In the second
part, the plastic strains and plastic work are determined, while the displacements at the end
points of the bar are computed in the third part.
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Part 1
The displacement U(Xh t) at the interior points of the bar is governed by the equation of

motion (2). This is integrated, giving the second order approximation

(10)

where

According to (10), it is possible to compute the displacement U at an internal point at time
t + ilt provided its value at the previous and present time steps, t - ilt, and t respectively, as
well as the values of the plastic strain E ~1 at time t, are known throughout the bar.

Part 2
The finite difference procedure for this part is identical to that described in [13]. It is noted

that eqn (25) of [13], on the basis of [14], reduces for the present uniaxial case to

(11)

where ilZ is the increment of Z in the time change ilt, and Z+ and Z- are the hardening
variables in the directions of the positive and negative stress axes, i.e. tension and compression.

A misprint occurred in eqn (27) of (13); it should read for this case

(12)

Part 3
The boundary values of the displacement at XI == 0 are determined from the velocity input

U(XI == 0) == Vj(t) giving

(13)

If the applied loading were of the stress type, (TIl == pet) at XI == 0, then the condition on the end
displacement would be

For a rigidly clamped end,

U(x == H, t) == o.

(14)

(15)

APPLICATIONS

A number of examples were calculated to obtain the stress, strain and displacement fields
(XI, t) of bars subjected to an imposed velocity at one end. The computations were based on
commercially pure titanium as the bar material using the same elastic and plastic material
constants as in[6, 13]: E(elastic) == 1.18 x 105 MPa, /L(elastic) == 0.44 x 105 MPa, p == 4.87 gm/cm

3
,

Zo == 1150 MPa, ZI == 1400 MPa, Do == 104 sec-I, n == 1 and m == 100, and from [12), q == 0.05.
Commercially pure titanium is strongly strain rate sensitive [6, 8], and a change in strain rate
from 3 x 10-3 sec-I to 3 sec-I would cause an increase of the flow stress of about 35%, Fig. 1,
while higher rates would result in larger factors. Stress-strain curves computed from the above
constants, Fig. 1, indicate the absence of a reference "static" curve which is fundamental to the
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Fig. I. Calculated stress-strain curves for titanium at different applied strain rates.

formulation, although the relative rate sensitivity at the low rates is appreciably smaller than at
the high rates. In the wave propagation examples, the plastic strain rates near the struck end at
early times after impact (about 50 /J.s) were of the order of 103 sec-I.

The numerical examples were for cases of semi-infinite and finite bars subjected to a
constant velocity at one end which was maintained either indefinitely or for a specific time
period. In addition, the condition of a high velocity superimposed on a low velocity at the end
of a finite bar was run. A particular length of finite bar was used in the examples, namely
H =(CtDo-115) which for titanium corresponds to H =0.122 m. In this paper, Ct denotes the
velocity of dilatational waves, c, = [p.(4p. - E)/(3p. - E)p]I/2, and Co is the bar velocity, Co =
(Elp)"2. For titanium, C1=6100 mls and Co =5000 m/s. For most of the numerical examples, the
spatial increments were JixdH = om and the time steps 0.18 J,LS, but these were decreased by a
factor of 5 in some cases (Figs. 2 and 3). A typical computation on an IBM 370/168 of all the
response quantities for an elapsed time of 150 p.s required about 10 min. computation time for
the semi-infinite bar and about 3 min. for the finite bar. It should be mentioned that preliminary
results using a much courser grid were communicated to Nicholas and reported in [4].

DISCUSSION OF RESULTS

Graphs illustrating results of the numerical exercises are shown in Figs. 2-6. Figures 2 and 3
show the stress and strain response for a semi-infinite rod subjected to a suddenly applied and
maintained velocity Vi at the free end x, = O. Some of the response features shown in Fig. 2,
which gives spatial distributions at different times, are the propagation of the wave front at the
elastic bar velocity, Co, the appearance of an apparent "yield stress", i.e. the amplitude of the
wave front, which decays with time, and the tendency of the stress and plastic strain levels to
form a "plateau", i.e. to be almost constant, near the struck end despite the strong rate
sensitivity of the material. The oscillations in the stress-distance plot are due to the finite



3\0 S. R BODNER and J. ABOUDl

t: 5.4 IJS]
10.8
20.7 Vi :152.5m/s
SO.4 T",:oo

100.8

MATERIAL; TITANIUM (CP)
Cl: 6100m/s (dilatation)
Co: SOOOm/s (~l(t~nsion)

..;:
Cf

0.1

o 0.08

Xl (m)

0,10 0.12
;(1':0.122

Fig. 2. Stress and plastic'strain distribution in a semi-infinite bar subjected to constant velocity impact at end.

3.0

0.2

0.3

MATERIAl: TITANIUM (C.P.)

Cl :6100 m/s (dilatation)
C() : 5000m/s (extension)

Vi :152.5mls) Tm:OO

0.122
0.183

0.244
0.366

0.5

2.0

2.5

tf
• 1.0

--CJa..
,.,~ 1.5
g

------ 0.1
r I

O!-/-k:::J~~~~~~~-:.....--'";-~::---_-:+;;-_lo
? 20\ 40 60
~to:Xl/Co(0.122m)

Fig. 3. Stress and total-strain histories in a semi·infinite bar SUbjected to constant velocity impact at end.



Propagation in rods of elastic-viscoplastic material 311

difference numerical solution and are not a consequence of radial inertia effects which are
absent in the present formulation. These could have been eliminated by a numerical procedure,
but were maintained to ensure that the basic response information is maintained.

The stress variations with time and distance near the struck end show some interesting
characteristics. At the end Xl = 0, the immediate response to the applied velocity is fully elastic,
Fig. 3, and the stress peak corresponds exactly to the elastic relation a = pco Vi' This stress
decays rapidly with time and reaches a third of the original value in 30 IlS. The wave front
amplitude also decays with distance and reaches a value of 410 MPa after 50 cm of travel
(100 IlS). This "yield stress" corresponds to a strain rate of about 3 sec-I which is slow
compared to the initial plastic strain rates which are of the order of 103 sec -l. It is stilI 35%
higher than the "quasi-static" yield stress, i.e. that corresponding to a strain rate of about
10-3sec-I, Fig. 1.

These computed results tend to be in qualitative agreement with experimental observations
although direct comparison with identical specimen materials and experimental conditions is
not available. Impact tests on rods of a similar, but not identical, titanium are reported by Hsu
and Clifton in [15], together with a rate dependent analysis for the test conditions.

Plateaus of constant stress and plastic strain near the struck end of impacted rods are
generally observed, e.g. [1], and have in the past been the catalyst for arguments on the rate
independence of specimen materials. It is interesting to note that these plateaus computed
from a rate dependent formulation exist even for short times after impact. The presence of a
high elastic stress peak at the struck end, as shown in Fig. 3, has been observed experimentally
by Bell[16] and noted by Cristescu[17]. Detailed examination of the strain-time results show
that the propagation velocity of equal strain levels is almost constant at small strains (- 1%),
but deviates from constant at high strains. Similar results were obtained both experimentally
and analytically for titanium in [15]. A constant wave velocity is predicted by the rate
independent plastic wave theory and has been observed experimentally by Bell[18] for
relatively rate insensitive materials such as aluminum and copper. Another point of departure
from the rate independent theory and the observations of Bell [19] is the absence of a strain
maximum on the strain-time plot, Fig. 3. However, results corresponding to Fig. 3 have been
obtained both experimentally and analytically for titanium in [IS].

For long times after impact, the maximum stress that propagates at the elastic bar velocity is
generally observed to correspond to the "static-yield stress", e.g. [I]. However, for a strongly
rate dependent material such as titanium, relaxation to the "quasi-static" yield stress is seen in
Figs. 2 and 3 and in the results of [15] to be relatively slow. "Yield stresses" that are 30-40%
above the quasi-static value are obtained for times 100-200 IlS after impact. The tendency of
the results of a rate dependent formulation to approach the "quasi-static" response with
increasing time has been noted by others and is discussed in [4]. A reference "static"
stress-strain curve is not included in the reference constitutive equations, but rate dependence
in the low rate range is relatively weak. Once the plastic strain rates drop to the low range,
decay of the stress front is fairly slow with time and distance.

Another numerical exercise was the case of a finite rod which is fixed at one end and
subjected to a low velocity at the free end for a time period after which the velocity is suddenly
increased to a high value. The initial low velocity, Vo= 1.22 X 10-4 mIs, does not introduce
inertial effects and creates a uniform strain rate of 10-3 sec-lover the bar length. At a total
strain of 0.03, the high velocity, Vi = 61.0 mIs, is suddenly imposed which leads to elastic
plastic stress waves. Stress and strain response to the high velocity are shown in Figs. 4 and 5
as functions of distance and time respectively. One of the features of the results is that the
wave front travels at the elastic bar velocity which is expected for a rate dependent material.
This wave front exhibits a finite amplitude which decays with time and distance. In fact, the
overall response results for a velocity applied to a prestrained rod, Figs. 4 and 5, are similar to
those of a high intensity velocity on an unstrained rod, Figs. 2 and 3, with somewhat more rapid
decay of the wave front. The results also appear to be similar to those obtained experimentally
for corresponding conditions such as those reported in [19].

An unusual result in Fig. 5 is the increase in the wave front amplitude at the fixed end, but
this is due to the doubling of the elastic stress component at that station. The elastic front
reaches the end of the rod in 24.4lls. By the time the elastic wave front returns to the free end
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of the rod, wave effects are almost eliminated and the rod extends at an almost uniform strain
rate of 500 sec-I due to the applied velocity. An elastic wave of diminishing amplitude would
continue to propagate along the rod for some time. Under steady state conditions, the situation
would correspond to a quasi-static test in which a specimen is subjected to a sudden increase in
strain rate. After a rapid jump in stress level, the flow stress is governed by the applied strain
rate and the amount of work hardening (plastic work).

A set of exercises was run for cases of a velocity Vi applied to the end of a semi-infinite rod
for a prescribed time period T~, and a typical result is shown in Fig. 6. The stress and strain
response is identical to that given in Figs. 2 and 3 until the removal of the applied velocity
which for Fig. 6 occurred at Tm = 40 p.s. Unloading then sets in with resulting stress waves of
reversed sign. In these computations, the anisotropic hardening formulation was employed as
described previously with the material constant q = 0.05 as in [12]. In Fig. 6, the oscillations
upon unloading are due to numerical effects.

It is noted in Fig. 6 that the initial unloading response at the struck end is almost completely
elastic with a resulting high stress in the opposite direction. The high stress levels due to both
loading and unloading decay with time and distance and the stress pulse assumes a fairly stable
form after some distance along the rod. The computed wave form at the station Xl = 12.2 em
from the struck end could be compared to that obtained experimentally in [20] for elastic
plastic pulse propagation in long rods of aluminum. Fig. 12 of [20] gives the experimental
strain-time response at a remote station from the impacted end, from which a stress-time curve
similar to Fig. 6 could be deduced based on the strain rate independent plastic wave theory. A
Bauschinger effect on the reversed stress was evident from the experimental results of [20]. The
present rate dependent formulation includes a Bauschinger effect (anisotropic hardening) and
predicts stress-time and strain-time relations at stations removed from the impact end, Fig. 6,
that appear similar in form to those obtained experimentally in [20J for a rate insensitive
material but with flow stress levels raised above the "quasi-static" values.
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CONCLUSIONS
A set of constitutive equations that serves to realistically represent the strain-rate dependent

and work-hardening inelastic properties of metals has been used to solve a variety of uniaxial
wave propagation problems by the finite difference method. Numerical exercises for a strongly
rate-dependent material, titanium, show response characteristics which are consistent with a
number of experimental observations. These include the appearance of a "plateau" of almost
constant stress and plastic strain with distance near the impacted end of long rods, the
instantaneous elastic response at the struck end which rapidly decays with time, the attenuation
of the initially high amplitude of the elastic stress front to a "slow strain rate" value, the inital
elastic response of plastically deformed rods to suddenly applied superimposed loading, and the
tendency of the response to pulse loading to approach that of the rate independent plastic wave
theory at long times after initial impact. Strain-time profiles do not show a plateau of uniform
strain which would be indicated by the rate-independent theory, and the propagation velocity of
a high strain (> 1%) is not constant. These results demonstrate the importance of the use of
rate-dependent constitutive equations for such cases even though certain phenomena are
predicted by the rate-independent theory. In addition, it is shown that anisotropic work
hardening (the Bauschinger Effect) should be considered for the pulse loading condition.
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